Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
1.
International Conference on Reliable Systems Engineering, ICoRSE 2022 ; 534 LNNS:203-214, 2023.
Article in English | Scopus | ID: covidwho-2048134

ABSTRACT

Due to the current acute problem of combating the SARS-CoV coronavirus, our team has proposed an innovative technology to combat the virus in closed or ventilated rooms. The developed design of ventilation equipment ensures the inactivation of coronavirus by thermal exposure of sufficient duration. The virus is destroyed outside the human body, so sterilization is preventive. Capturing the virus from the airflow and its retention with subsequent disinfection occurs using a finely dispersed catching medium, using the effect of coagulation of the medium vapors, its coalescence, and intense heating. The use of highly efficient heating technology using microwave energy allows sterilizing the virus with minimal energy consumption. Unlike virus disinfection technologies developed in the world using ultraviolet radiation, the technology we offer involves a long-term deactivating thermal effect on the virus, which ensures a high degree of disinfection. © 2023, The Author(s), under exclusive license to Springer Nature Switzerland AG.

2.
Trends Food Sci Technol ; 104: 219-234, 2020 Oct.
Article in English | MEDLINE | ID: covidwho-1791132

ABSTRACT

BACKGROUND: Garlic (Allium sativum L.) is a common herb consumed worldwide as functional food and traditional remedy for the prevention of infectious diseases since ancient time. Garlic and its active organosulfur compounds (OSCs) have been reported to alleviate a number of viral infections in pre-clinical and clinical investigations. However, so far no systematic review on its antiviral effects and the underlying molecular mechanisms exists. SCOPE AND APPROACH: The aim of this review is to systematically summarize pre-clinical and clinical investigations on antiviral effects of garlic and its OSCs as well as to further analyse recent findings on the mechanisms that underpin these antiviral actions. PubMed, Cochrane library, Google Scholar and Science Direct databases were searched and articles up to June 2020 were included in this review. KEY FINDINGS AND CONCLUSIONS: Pre-clinical data demonstrated that garlic and its OSCs have potential antiviral activity against different human, animal and plant pathogenic viruses through blocking viral entry into host cells, inhibiting viral RNA polymerase, reverse transcriptase, DNA synthesis and immediate-early gene 1(IEG1) transcription, as well as through downregulating the extracellular-signal-regulated kinase (ERK)/mitogen activated protein kinase (MAPK) signaling pathway. The alleviation of viral infection was also shown to link with immunomodulatory effects of garlic and its OSCs. Clinical studies further demonstrated a prophylactic effect of garlic in the prevention of widespread viral infections in humans through enhancing the immune response. This review highlights that garlic possesses significant antiviral activity and can be used prophylactically in the prevention of viral infections.

3.
Med Hypotheses ; 161: 110798, 2022 Apr.
Article in English | MEDLINE | ID: covidwho-1763894

ABSTRACT

Coronaviruses have received worldwide attention following several severe acute respiratory syndrome (SARS) epidemics. In 2019, the first case of coronavirus disease (COVID-19) caused by a novel coronavirus (SARS-coronavirus 2 [CoV-2]) was reported. SARS-CoV-2 employs RNA-dependent RNA polymerase (RdRp) for genome replication and gene transcription. Recent studies have identified a sulfur (S) metal-binding site in the zinc center structures of the RdRp complex. This metal-binding site is essential for the proper functioning of the viral helicase. We hypothesize that the use of essential nutrients can permeabilize the cell membranes. The oxidation of the metal-binding site occurs via analogs of the essential S-containing amino acid, l-Methionine. l-Methionine can operate as a carrier, and its binding would cause the potential disassembly of RdRp via the S complex and drive methyl donors via a possible countercurrent exchange mechanism and electrical-chemical gradient leading to SARS-CoV-2 replication failure. Our previously published hypothesis on the control of cancer cell proliferation suggests that the presence of a novel disulfide/methyl- adenosine triphosphate pump as an energy source would allow this process. The S binding site in l-Methionine serves as a potential target cofactor for SARS-CoV RdRp, thus providing a possible avenue for the future development of vaccines and antiviral therapeutic strategies to combat COVID-19.

4.
Phytomed Plus ; 1(4): 100083, 2021 Nov.
Article in English | MEDLINE | ID: covidwho-1253471

ABSTRACT

Background: Lack of treatment of novel Coronavirus disease led to the search of specific antivirals that are capable to inhibit the replication of the virus. The plant kingdom has demonstrated to be an important source of new molecules with antiviral potential. Purpose: The present study aims to utilize various computational tools to identify the most eligible drug candidate that have capabilities to halt the replication of SARS-COV-2 virus by inhibiting Main protease (Mpro) enzyme. Methods: We have selected plants whose extracts have inhibitory potential against previously discovered coronaviruses. Their phytoconstituents were surveyed and a library of 100 molecules was prepared. Then, computational tools such as molecular docking, ADMET and molecular dynamic simulations were utilized to screen the compounds and evaluate them against Mpro enzyme. Results: All the phytoconstituents showed good binding affinities towards Mpro enzyme. Among them laurolitsine possesses the highest binding affinity i.e. -294.1533 kcal/mol. On ADMET analysis of best three ligands were simulated for 1.2 ns, then the stable ligand among them was further simulated for 20 ns. Results revealed that no conformational changes were observed in the laurolitsine w.r.t. protein residues and low RMSD value suggested that the Laurolitsine-protein complex was stable for 20 ns. Conclusion: Laurolitsine, an active constituent of roots of Lindera aggregata, was found to be having good ADMET profile and have capabilities to halt the activity of the enzyme. Therefore, this makes laurolitsine a good drug candidate for the treatment of COVID-19.

5.
Gene Rep ; 23: 101045, 2021 Jun.
Article in English | MEDLINE | ID: covidwho-1085555

ABSTRACT

In late 2019, a novel Coronavirus emerged in China. Perceiving the modulating factors of cross-species virus transmission is critical to elucidate the nature of virus emergence. Using bioinformatics tools, we analyzed the mapping of the SARS-CoV-2 genome, modeling of protein structure, and analyze the evolutionary origin of SARS-CoV-2, as well as potential recombination events. Phylogenetic tree analysis shows that SARS-CoV-2 has the closest evolutionary relationship with Bat-SL-CoV-2 (RaTG13) at the scale of the complete virus genome, and less similarity to Pangolin-CoV. However, the Receptor Binding Domain (RBD) of SARS-CoV-2 is almost identical to Pangolin-CoV at the aa level, suggesting that spillover transmission probably occurred directly from pangolins, but not bats. Further recombination analysis revealed the pathway for spillover transmission from Bat-SL-CoV-2 and Pangolin-CoV. Here, we provide evidence for recombination event between Bat-SL-CoV-2 and Pangolin-CoV that resulted in the emergence of SARS-CoV-2. Nevertheless, the role of mutations should be noted as another influencing factor in the continuing evolution and resurgence of novel SARS-CoV-2 variants.

6.
J Environ Chem Eng ; 9(2): 104973, 2021 Apr.
Article in English | MEDLINE | ID: covidwho-1056884

ABSTRACT

The world is presently infected by the biological fever of COVID-19 caused by SARS-CoV-2 virus. The present study is mainly related to the airborne transmission of novel coronavirus through airway. Similarly, our mother planet is suffering from drastic effects of air pollution. There are sufficient probabilities or evidences proven for contagious virus transmission through polluted airborne-pathway in formed aerosol molecules. The pathways and sources of spread are detailed along with the best possible green control technologies or ideas to hinder further transmission. The combined effects of such root causes and unwanted outcomes are similar in nature leading to acute cardiac arrest of our planet. To maintain environmental sustainability, the prior future of such emerging unknown biological hazardous air emissions is to be thoroughly researched. So it is high time to deal with the future of hazardous air pollution and work on its preventive measures. The lifetime of such an airborne virus continues for several hours, thus imposing severe threat even during post-lockdown phase. The world waits eagerly for the development of successful vaccination or medication but the possible outcome is quite uncertain in terms of equivalent economy distribution and biomedical availability. Thus, risk assessments are to be carried out even during the post-vaccination period with proper environmental surveillance and monitoring. The skilled techniques of disinfection, sanitization, and other viable wayouts are to be modified with time, place, and prevailing climatic conditions, handling the pandemic efficiently. A healthy atmosphere makes the earth a better place to dwell, ensuring its future lifecycle.

7.
Comput Struct Biotechnol J ; 19: 1072-1080, 2021.
Article in English | MEDLINE | ID: covidwho-1056514

ABSTRACT

The coronavirus (CoV) infects a broad range of hosts including humans as well as a variety of animals. It has gained overwhelming concerns since the emergence of deadly human coronaviruses (HCoVs), severe acute respiratory syndrome coronavirus (SARS-CoV) in 2003, followed by Middle East respiratory syndrome coronavirus (MERS-CoV) in 2015. Very recently, special attention has been paid to the novel coronavirus disease 2019 (COVID-19) caused by SARS-CoV-2 due to its high mobility and mortality. As the COVID-19 pandemic continues, despite vast research efforts, the effective pharmaceutical interventions are still not available for clinical uses. Both expanded knowledge on structure insights and the essential function of viral nucleocapsid (N) protein are key basis for the development of novel, and potentially, a broad-spectrum inhibitor against coronavirus diseases. This review aimed to delineate the current research from the perspective of biochemical and structural study in cell-based assays as well as virtual screen approaches to identify N protein antagonists targeting not only HCoVs but also animal CoVs.

8.
JACC Basic Transl Sci ; 5(5): 501-517, 2020 May.
Article in English | MEDLINE | ID: covidwho-1023614

ABSTRACT

The coronavirus disease-2019 (COVID-19) pandemic has resulted in a proliferation of clinical trials designed to slow the spread of severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2). Many therapeutic agents that are being used to treat patients with COVID-19 are repurposed treatments for influenza, Ebola, or for malaria that were developed decades ago and are unlikely to be familiar to the cardiovascular and cardio-oncology communities. Here, the authors provide a foundation for cardiovascular and cardio-oncology physicians on the front line providing care to patients with COVID-19, so that they may better understand the emerging cardiovascular epidemiology and the biological rationale for the clinical trials that are ongoing for the treatment of patients with COVID-19.

9.
Toxicol Rep ; 8: 73-83, 2021.
Article in English | MEDLINE | ID: covidwho-989328

ABSTRACT

SARS-CoV-2 infection was announced as a pandemic in March 2020. Since then, several scientists have focused on the low prevalence of smokers among hospitalized COVID-19 patients. These findings led to our hypothesis that the Nicotinic Cholinergic System (NCS) plays a crucial role in the manifestation of COVID-19 and its severe symptoms. Molecular modeling revealed that the SARS-CoV-2 Spike glycoprotein might bind to nicotinic acetylcholine receptors (nAChRs) through a cryptic epitope homologous to snake toxins, substrates well documented and known for their affinity to the nAChRs. This binding model could provide logical explanations for the acute inflammatory disorder in patients with COVID-19, which may be linked to severe dysregulation of NCS. In this study, we present a series of complexes with cholinergic agonists that can potentially prevent SARS-CoV-2 Spike glycoprotein from binding to nAChRs, avoiding dysregulation of the NCS and moderating the symptoms and clinical manifestations of COVID-19. If our hypothesis is verified by in vitro and in vivo studies, repurposing agents currently approved for smoking cessation and neurological conditions could provide the scientific community with a therapeutic option in severe COVID-19.

10.
Int J Clin Pract ; 75(4): e13868, 2021 Apr.
Article in English | MEDLINE | ID: covidwho-971427

ABSTRACT

During the December of 2019, a series of patients with pneumonia caused by novel coronavirus; the severe acute respiratory syndrome (SARS) corona (COV-2), that is, COVID-19. Since the first cluster of cases was reported in China on 31 December 2019 until the 28 April 2020, there were internationally reported 3'000'000 cases, in over 185 countries, and 207'265 deaths. To date, it is still not unanimously clear which effects parameters of virus and host are important for the development of severe disease course. According to the most updated internationally available online cases register, COVID-19 disease has mild symptoms in around 85% of cases, there are 3%-10% of critical cases, and mortality is around 5%-7%. Since currently there is no available vaccine and no well-established specific antiviral therapy, numerous agents are being tested in clinical scenarios. The most common regimens include remdesivir, convalescent plasma. Widely used chloroquine, hydroxychloroquine and azithromycin combinations, as well as lopinavir-ritonavir were shown to have less efficient treatment effects. More severe cases of pneumonia and dyspnoea, or uncontrollable fever are treated as inpatients, and nearly 10% in intensive care units. Oxygen supplementation is indicated to maintain peripheral blood oxygenation over 90%-96%. Advanced support systems include mechanical ventilation and extracorporeal membranous support; however, those without targeted antiviral therapy represent only temporary bridge for scarce potential restitution in patient themselves. The aim of review is to present current state of the art in epidemiology, pathogenesis, clinical course and treatment of COVID-19 patients.


Subject(s)
COVID-19 Drug Treatment , COVID-19 , Pandemics , COVID-19/epidemiology , COVID-19/therapy , China , Communicable Disease Control , Humans , Immunization, Passive , Prospective Studies , Retrospective Studies , SARS-CoV-2 , Virulence , COVID-19 Serotherapy
11.
Saudi Pharm J ; 28(12): 1760-1776, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-922083

ABSTRACT

The COVID-19 pandemic has required clinicians to urgently identify new treatment options or the re-purposing of existing drugs. Of particular interest are chloroquine (CQ) and hydroxychloroquine (HCQ). The aims of this systematic review are to systematically identify and collate 24 studies describing the use of CQ and HCQ in human clinical trials and to provide a detailed synthesis of evidence of its efficacy and safety. Of clinical trials, 100% showed no significant difference in the probability of viral transmission or clearance in prophylaxis or therapy, respectively, compared to the control group. Among observational studies employing an endpoint specific to efficacy, 58% concurred with the finding of no significant difference in the attainment of outcomes. Three-fifths of clinical trials and half of observational studies examining an indicator unique to drug safety discovered a higher probability of adverse events in those treated patients suspected of, and diagnosed with, COVID-19. Of the total papers focusing on cardiac side-effects, 44% found a greater incidence of QTc prolongation and/or arrhythmias, 44% found no evidence of a significant difference, and 11% mixed results. The strongest available evidence points towards the inefficacy of CQ and HCQ in prophylaxis or in the treatment of hospitalised COVID-19 patients.

12.
Comput Struct Biotechnol J ; 18: 1884-1890, 2020.
Article in English | MEDLINE | ID: covidwho-652297

ABSTRACT

The nucleocapsid (N) protein is conserved in all four genera of the coronaviruses, namely alpha, beta, gamma, and delta, and is essential for genome functionality. Bioinformatic analysis of coronaviral N sequences revealed two intrinsically disordered regions (IDRs) at the center of the polypeptide. While both IDR structures were found in alpha, beta, and gamma-coronaviruses, the second IDR was absent in deltacoronaviruses. Two novel coronaviruses, currently placed in the Gammacoronavirus genus, appeared intermediate in this regard, as the second IDR structure could be barely discerned with a low probability of disorder. Interestingly, these two are the only coronaviruses thus far isolated from marine mammals, namely beluga whale and bottlenose dolphin, two highly related species; the N proteins of the viruses were also virtually identical, differing by a single amino acid. These two unique viruses remain phylogenetic oddities, since gammacoronaviruses are generally avian (bird) in nature. Lastly, both IDRs, regardless of the coronavirus genus in which they occurred, were rich in Ser and Arg, in agreement with their disordered structure. It is postulated that the central IDRs make cardinal contributions in the multitasking role of the nucleocapsid protein, likely requiring structural plasticity, perhaps also impinging on coronavirus host tropism and cross-species transmission.

13.
Ann Med Surg (Lond) ; 59: 68-71, 2020 Nov.
Article in English | MEDLINE | ID: covidwho-733983

ABSTRACT

The 2019 novel coronavirus (SARS-CoV-2) and the disease it causes - coronavirus disease 2019 (COVID-19) have rapidly swept across the world since the first known human manifestation on December 8, 2019 in Wuhan (Hubei Province, China)1,2. The epidemic of the COVID-19 has presented as a grim and complex situation, causing great impact on economy and society, and seriously interfering with ordinary medical practice, threatening to exceed healthcare capacity in many countries over the globe. With no doubt, dealing with the COVID-19 has caused great social and medical crisis that presented great challenges to the medical and healthcare society, forcing it to face unprecedented times, and to reconceptualize how to provide quality health care while enforcing public health measures necessary for pandemic containment and optimal allocation of healthcare resources. However, along with this unparalleled time challenges, came great opportunities for changes and improvements, for innovations and creative solutions, some of which should be adopted and incorporated to the daily medical practices and social routine, even in the post-COVID-19 pandemic era.

14.
JACC Case Rep ; 2(9): 1240-1244, 2020 Jul 15.
Article in English | MEDLINE | ID: covidwho-574717

ABSTRACT

A 34-year-old man was admitted with acute lung injury and COVID-19 pneumonia. In the intensive care unit, he experienced episodes of prolonged asystole accompanied by hypotension without loss of consciousness. Once reversible causes were excluded, symptoms were related to dysfunction of the sinus node, and the patient underwent implantation of a pacemaker. (Level of Difficulty: Beginner.).

15.
Neurol Psychiatry Brain Res ; 37: 27-32, 2020 Sep.
Article in English | MEDLINE | ID: covidwho-437051

ABSTRACT

OBJECTIVE: To describe the main neurological manifestations related to coronavirus infection in humans. METHODOLOGY: A systematic review was conducted regarding clinical studies on cases that had neurological manifestations associated with COVID-19 and other coronaviruses. The search was carried out in the electronic databases PubMed, Scopus, Embase, and LILACS with the following keywords: "coronavirus" or "Sars-CoV-2" or "COVID-19" and "neurologic manifestations" or "neurological symptoms" or "meningitis" or "encephalitis" or "encephalopathy," following the Systematic Reviews and Meta-Analyses (PRISMA) guidelines. RESULTS: Seven studies were included. Neurological alterations after CoV infection may vary from 17.3% to 36.4% and, in the pediatric age range, encephalitis may be as frequent as respiratory disorders, affecting 11 % and 12 % of patients, respectively. The Investigation included 409 patients diagnosed with CoV infection who presented neurological symptoms, with median age range varying from 3 to 62 years. The main neurological alterations were headache (69; 16.8 %), dizziness (57, 13.9 %), altered consciousness (46; 11.2 %), vomiting (26; 6.3 %), epileptic crises (7; 1.7 %), neuralgia (5; 1.2 %), and ataxia (3; 0.7 %). The main presumed diagnoses were acute viral meningitis/encephalitis in 25 (6.1 %) patients, hypoxic encephalopathy in 23 (5.6 %) patients, acute cerebrovascular disease in 6 (1.4 %) patients, 1 (0.2 %) patient with possible acute disseminated encephalomyelitis, 1 (0.2 %) patient with acute necrotizing hemorrhagic encephalopathy, and 2 (1.4 %) patients with CoV related to Guillain-Barré syndrome. CONCLUSION: Coronaviruses have important neurotropic potential and they cause neurological alterations that range from mild to severe. The main neurological manifestations found were headache, dizziness and altered consciousness.

16.
JACC Basic Transl Sci ; 5(5): 518-536, 2020 May.
Article in English | MEDLINE | ID: covidwho-306628

ABSTRACT

Coronavirus disease-2019 (COVID-19), a contagious disease caused by severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2), has reached pandemic status. As it spreads across the world, it has overwhelmed health care systems, strangled the global economy, and led to a devastating loss of life. Widespread efforts from regulators, clinicians, and scientists are driving a rapid expansion of knowledge of the SARS-CoV-2 virus and COVID-19. The authors review the most current data, with a focus on the basic understanding of the mechanism(s) of disease and translation to the clinical syndrome and potential therapeutics. The authors discuss the basic virology, epidemiology, clinical manifestation, multiorgan consequences, and outcomes. With a focus on cardiovascular complications, they propose several mechanisms of injury. The virology and potential mechanism of injury form the basis for a discussion of potential disease-modifying therapies.

17.
JACC CardioOncol ; 2(2): 254-269, 2020 Jun.
Article in English | MEDLINE | ID: covidwho-72216

ABSTRACT

The coronavirus disease-2019 (COVID-19) pandemic has resulted in a proliferation of clinical trials designed to slow the spread of severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2). Many therapeutic agents that are being used to treat patients with COVID-19 are repurposed treatments for influenza, Ebola, or for malaria that were developed decades ago and are unlikely to be familiar to the cardiovascular and cardio-oncology communities. Here, we provide a foundation for cardiovascular and cardio-oncology physicians on the front line providing care to patients with COVID-19, so that they may better understand the emerging cardiovascular epidemiology and the biological rationale for the clinical trials that are ongoing for the treatment of patients with COVID-19.

SELECTION OF CITATIONS
SEARCH DETAIL